Edited by
Martin J. Leahy

Microcirculation Imaging
Related Titles

Wolfbeis, O. S. (ed.)
Fluorescence Methods and Applications
Spectroscopy, Imaging, and Probes
2008
ISBN: 978-1-57331-716-0

de Leon, M. J., Snider, D. A., Federoff, H. (eds.)
Imaging and the Aging Brain
2007
ISBN: 978-1-57331-659-0

Ntziachristos, V., Leroy-Willig, A., Tavitian, B. (eds.)
Textbook of in vivo Imaging in Vertebrates
2007
1. Live imaging of the developing vasculature in Tg(Flk1-myr::mCherry) X Tg(Flk1-H2B::EYFP) mice using confocal microscopy (for more details, see Fig. 2c in Chapter 12 by Irina V. Larina and Mary E. Dickinson).
2. The working principles of sidestream dark-field (SDF) imaging (for more details, see Fig. 2 in Chapter 2 by M.J. Milstein et al.).
3. Three-dimensional image of an experimental tumor (KHT) growing in a mouse (for more details, see Fig. 6 in Chapter 13 by Stuart Foster).
4. Blood flow changes during stroke: relative cerebral blood flow 10 min after occlusion of the middle cerebral artery in a rat (for more details, see Fig. 12 in Chapter 8 by Bryers et al., with kind permission by SPIE and A.K. Dunn, University of Texas).
5. Micro-CT image data (20 µm isotropic voxels) of the vascular bed of a rat heart, which was filled with a contrast agent (Microfil) and was imaged in situ. For more details, see Fig. 15 in Chapter 14 by Timothy L. Kline and Erik L. Ritman.)
Contents

Preface XIII
List of Contributors XV

1 A Historical Perspective of Imaging of the Skin and Its Gradual Uptake for Clinical Studies, Inclusive of Personal Reminiscences of Early Days of Microcirculation Societies 1
 Terence J. Ryan and Martin J. Leahy
 1.1 Early History 1
 1.2 The Microcirculatory Societies 4
 1.3 A Tour of Microcirculatory Centers in 1968 12
 1.4 TV Video Projection 15
 1.5 The Third World Congress of Microcirculation 18
 1.6 Perfusion Monitoring and the Advent of the Laser Doppler 20
 1.7 3D and 4D Tomographic Methods 27
 1.8 Nonoptical Microcirculation Imaging 30
 1.9 Panel Discussions and International Convergence 30
 References 31

2 Sidestream Dark-Field (SDF) Video Microscopy for Clinical Imaging of the Microcirculation 37
 Dan M.J. Milstein, Rick Bezemer, and Can Ince
 2.1 Introduction 37
 2.2 Quantifying the Functional State of the Microcirculation 40
 2.3 Microcirculatory Image Acquisition 42
 2.3.1 SDF Instrument 42
 2.4 Automated Microcirculation Image Analysis 44
 2.5 International Consensus on Microcirculation Image Acquisition and Analysis 46
 2.6 Future Prospects 48
 2.7 Conclusion 49
 References 49
3 Clinical Applications of SDF Videomicroscopy 53
 Daniel De Backer and Jean-Louis Vincent

3.1 Introduction 53
3.2 Microcirculatory Alterations Visualized with OPS/SDF Imaging 53
3.2.1 In Sepsis 53
3.2.2 In Severe Heart Failure and Cardiogenic Shock 54
3.2.3 During and after Cardiac Arrest 55
3.2.4 In Surgery 55
3.2.4.1 Cardiac Surgery 55
3.2.4.2 Noncardiac Surgery 56
3.2.5 Subarachnoid Hemorrhage 56
3.2.6 Dermatology 57
3.2.7 Oncology 57
3.2.8 Cirrhosis 57
3.2.9 Pediatric Use 57
3.3 Response of Microcirculatory Variables to Therapeutic Interventions 58
3.4 Perspective 61
References 62

4 Laser Doppler Flowmetry 67
 Ingemar Fredriksson, Marcus Larsson, and Tomas Strömberg

4.1 Theory 67
4.1.1 The Single Doppler Shift 68
4.1.2 The Doppler Power Spectrum 69
4.2 Conventional Measures 75
4.3 Hardware Realizations 78
4.3.1 LDPM 78
4.3.2 LDPI 79
4.3.3 CMOS Imager 80
4.3.4 Noise 81
4.3.5 Calibration 81
4.3.6 Measurement Depth and Volume 82
4.4 Monte Carlo and LDF 83
References 84

5 Toward Assessment of Speed Distribution of Red Blood Cells in Microcirculation 87
 Adam Liebert, Stanislaw Wojtkiewicz, and Roman Maniewski

5.1 Introduction 87
5.2 Theory of Laser Doppler Spectrum Decomposition 88
5.2.1 Single Doppler Scattering 88
5.2.2 Multiple Scattering 94
5.3 Validation of the Spectrum Decomposition Method 99
5.3.1 Laser Doppler Spectra Generated by Monte Carlo Simulations 99
8 Laser Speckle Contrast Analysis (LASCA) for Measuring Blood Flow
J. David Briers, Paul M. McNamara, Marie Louise O’Connell, and Martin J. Leahy
8.1 Introduction: Fundamentals of Laser Speckle 147
8.2 Time-Varying Speckle 148
8.3 Full-Field Speckle Methods 148
8.4 Single-Exposure Speckle Photography 149
8.5 Laser Speckle Contrast Analysis (LASCA) 150
8.6 The Question of Speckle Size 151
8.7 Theory 152
8.8 Practical Considerations 154
8.9 Applications and Examples 155
8.10 Recent Developments 156
8.11 Conclusions 159
Acknowledgments 159
References 159

9 Tissue Viability Imaging 165
Jim O’Doherty, Martin J. Leahy, and Gert E. Nilsson
9.1 Introduction 165
9.2 Operating Principle 166
9.3 Validation 172
9.3.1 Monte Carlo Modeling 172
9.3.2 Experimental Modeling 173
9.4 Technology 174
9.4.1 Software Toolboxes 177
9.4.1.1 Skin Damage Visualizer 177
9.4.1.2 Skin Color Tracker 177
9.4.1.3 Spot Analyzer 178
9.4.1.4 Wrinkle Analyzer 179
9.4.1.5 Surface Analyzer 179
9.5 Evaluation 179
9.5.1 Iontophoresis 180
9.5.2 Lipid Studies 181
9.5.3 UV-B Studies 182
9.5.4 Temporal Studies 186
9.6 Comparison with Other Instrumentation 189
9.7 Other Technology for Polarization Imaging 190
9.8 Discussion 192
References 192
10 Optical Microangiography: Theory and Application

Ruikang K. Wang and Hrebesh M. Subhash

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>197</td>
</tr>
<tr>
<td>10.2 Optical Coherence Tomography</td>
<td>198</td>
</tr>
<tr>
<td>10.2.1 Principle of OCT</td>
<td>199</td>
</tr>
<tr>
<td>10.2.2 Frequency Domain OCT (FD-OCT)</td>
<td>202</td>
</tr>
<tr>
<td>10.2.3 Doppler OCT</td>
<td>204</td>
</tr>
<tr>
<td>10.2.3.1 Principle of Doppler OCT (DOCT)</td>
<td>205</td>
</tr>
<tr>
<td>10.2.3.2 An Overview of DOCT-Based Flow Imaging Modalities</td>
<td>206</td>
</tr>
<tr>
<td>10.3 Optical Microangiography (OMAG)</td>
<td>207</td>
</tr>
<tr>
<td>10.3.1 Optical Instrumentation</td>
<td>208</td>
</tr>
<tr>
<td>10.3.2 First-Generation OMAG</td>
<td>209</td>
</tr>
<tr>
<td>10.3.2.1 In Vivo Experimental Demonstration of OMAG</td>
<td>213</td>
</tr>
<tr>
<td>10.3.2.2 Directional Flow Imaging in OMAG</td>
<td>215</td>
</tr>
<tr>
<td>10.3.3 Second-Generation OMAG</td>
<td>217</td>
</tr>
<tr>
<td>10.3.3.1 Theoretical Overview</td>
<td>218</td>
</tr>
<tr>
<td>10.3.4 Doppler OMAG</td>
<td>231</td>
</tr>
<tr>
<td>10.3.4.1 Signal Processing</td>
<td>234</td>
</tr>
<tr>
<td>10.3.4.2 Experimental Verification</td>
<td>235</td>
</tr>
<tr>
<td>10.3.4.3 In Vivo Imaging with DOMAG</td>
<td>237</td>
</tr>
<tr>
<td>10.3.4.4 Comparison between PRDOCT and DOMAG</td>
<td>239</td>
</tr>
<tr>
<td>10.4 Applications of OMAG</td>
<td>242</td>
</tr>
<tr>
<td>10.4.1 In Vivo Imaging of Mouse Cerebral Blood Perfusion and Vascular Plasticity Following Traumatic Brain Injury Using OMAG</td>
<td>243</td>
</tr>
<tr>
<td>10.4.2 Retinal and Choroidal Microvascular Perfusion Mapping with OMAG</td>
<td>247</td>
</tr>
<tr>
<td>10.4.3 Volumetric Imaging of Cochlear Blood Perfusion in Rodent with OMAG</td>
<td>251</td>
</tr>
<tr>
<td>10.5 Summary</td>
<td>253</td>
</tr>
</tbody>
</table>

References | 253 |

11 Photoacoustic Tomography of Microcirculation

Song Hu and Lihong V. Wang

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>259</td>
</tr>
<tr>
<td>11.2 PAT Systems</td>
<td>260</td>
</tr>
<tr>
<td>11.2.1 High-Resolution PAM</td>
<td>260</td>
</tr>
<tr>
<td>11.2.2 Real-Time PACT</td>
<td>262</td>
</tr>
<tr>
<td>11.3 Microcirculation Parameters Quantified by PAT</td>
<td>263</td>
</tr>
<tr>
<td>11.3.1 Total Hemoglobin Concentration and Microvascular Structure</td>
<td>263</td>
</tr>
<tr>
<td>11.3.2 Hemoglobin Oxygen Saturation</td>
<td>263</td>
</tr>
<tr>
<td>11.3.3 Blood Flow and Cell Counting</td>
<td>265</td>
</tr>
<tr>
<td>11.4 Biomedical Applications</td>
<td>267</td>
</tr>
<tr>
<td>11.4.1 Longitudinal Monitoring of Tumorlike Angiogenesis</td>
<td>267</td>
</tr>
<tr>
<td>11.4.2 Transcranial Imaging of Cortical Microvasculature</td>
<td>268</td>
</tr>
</tbody>
</table>
14.2.3 Conventional Micro-Computed Tomography System 316
14.2.3.1 Specimen Stage Rotation Geometry 317
14.2.3.2 Source–Detector Rotation Geometry 318
14.2.4 Image Reconstruction 320
14.2.5 Image Quality 320
14.2.5.1 X-Ray Dose 320
14.2.5.2 X-Ray Beam Hardening 320
14.2.5.3 CT Image Spatial Resolution 321
14.2.5.4 Physiological Gating 321
14.2.6 Multimodality Imaging 322
14.2.6.1 Micro-Positron Emission Tomography 324
14.2.6.2 Micro-Single Photon Emission Computed Tomography 325
14.2.6.3 Digital Subtraction Angiography 327
14.2.6.4 Histology 328
14.3 Specimen/Animal Preparation 329
14.3.1 Ex Vivo – Casting 329
14.3.2 In Situ – Contrast Agent Enhancement 330
14.3.3 In Vivo 333
14.3.4 Use of Probes 333
14.3.4.1 Nano-/Microspheres 333
14.4 Image Analysis 334
14.4.1 Segmentation 335
14.4.2 Centerline Extraction 337
14.4.3 Measurements 337
14.4.3.1 Segment Length 337
14.4.3.2 Segment Diameter 338
14.4.4 Erode/Dilate Analysis 338
14.4.5 Modeling 339
14.4.5.1 Analytical 339
14.4.5.2 Computational Fluid Dynamics 339
14.5 Summary and Future Developments 339
Acknowledgments 343
References 343

15 Imaging Blood Circulation Using Nuclear Magnetic Resonance 349
Christian M. Kerskens, Richard M. Piech and James F.M. Meaney
15.1 Introduction 349
15.1.1 The NMR Signal 350
15.1.2 Mechanisms by Which Microcirculation Can Alter MRI Signal 352
15.1.2.1 Time-of-Flight 352
15.1.2.2 Phase Shift 353
15.1.2.3 MRI Indicator Methods 354
15.2 MR-Angiography 356
15.2.1 MR-Angiography Techniques 357
15.2.1.1 Time-of-Flight MR Angiography (TOF MRA) 357
Contents

15.2.1.2 Phase Contrast Angiography 358
15.2.1.3 Contrast-Enhanced MR-Angiography (CEMRA) 359
15.2.1.4 Choice of the Underlying Technique 359
15.2.1.5 Fast Imaging 359
15.2.2 Clinical Applications 359
15.2.2.1 Different Diseases Usually Affect Arteries and Veins 359
15.2.2.2 Requirement for MR Imaging of Blood Vessels 360
15.2.2.3 Difference in Gadolinium Contrast Agents 361
15.2.2.4 Noncontrast MRA in Clinical Practice 361
15.2.2.5 From Anatomy to Function: MRA as Part of a Multisequence Approach 362
15.2.2.6 Effect of Field Strength: 1.5 T vs. 3 T 363
15.2.3 Conclusion 364
15.3 Perfusion Imaging 365
15.3.1 Time-of-Flight Perfusion Imaging 365
15.3.1.1 Continuous Arterial Spin Labeling (CASL) 365
15.3.1.2 Pulsed Arterial Spin Labeling (PASL) 367
15.3.2 Quantification 368
15.3.2.1 Modified Fick’ Law 368
15.3.2.2 Indicator-Dilution Model 368
15.3.2.3 Fokker–Planck Approach 370
15.3.3 Perfusion Imaging Using Phase Shift 372
15.3.4 Perfusion Imaging with Tracers 373
15.3.5 Applications 373
15.4 Blood Oxygenation Level-Dependent (BOLD) Contrast 373
15.4.1 BOLD Contrast Mechanism 374
15.4.2 fMRI 375
15.4.2.1 The fMRI Setup 375
15.4.2.2 fMRI Analysis 376
15.4.2.3 Limitations to Subtraction Paradigm 378
15.4.2.4 Alternative Experimental Designs 378
15.4.2.5 Analysis Based on Mathematical Models of Behavior 378
15.4.2.6 Combination with EEG and TMS 379
15.4.2.7 Recent Applications 379
15.4.2.8 Limitations 381
References 381

Index 387
Preface

This book brings together the main techniques used for imaging the small blood vessels, which supply nutritional oxygen and remove waste products from the cells of the body. The rapid development of new techniques to image the microcirculation (vessels <100 µm in diameter) in two and three dimensions was the main driver for publishing this book. The macrocirculation of the cardiovascular system enjoys a special place in medicine and is well catered for with imaging modalities that are ever present in our hospitals. X-ray CT, ultrasound, MRI, and PET all play an important role in diagnosis and treatment of the disorders of the large vessels. However, there is growing realization that some of the diseases that most threaten the quality and quantity of life in the developed world, such as diabetes and cancer, have their origins in the microcirculation. Therefore, new techniques with appropriate resolution were required to image these smaller vessels, and these largely depend on the rapid developments in photonics.

It is impossible to present all techniques that have been applied to microcirculation in this book. The editor is grateful to the (unknown) reviewers of the original proposal for their suggestion to supplement the biophotonics techniques well known to him with MRI and high-frequency ultrasound. The result is a more thorough covering of the field, although I am open to further suggestions for additions in future editions. Researchers, practitioners, and professionals in the fields of diabetes, cancer, wound healing, biomedical optics, and biophotonics, as well as professionals in other disciplines, such as laser physics and technology, fibre optics, spectroscopy, and biology, will find the book a useful resource. Graduate and undergraduate students studying biomedical physics and engineering, biomedical optics and biophotonics, and medical science would benefit greatly from consulting this reference.

Several Irish and international grants supported this project, particularly the National Biophotonics & Imaging Platform Ireland, funded by the Irish Government under the national development plan (NDP) 2007–2013 HEA PRTLI IV. I greatly appreciate the cooperation, contributions, patience, and support of all the contributors, my colleagues from the School of Physics at NUI Galway, the Department of Physics at the University of Limerick, the Royal College of Surgeons, and the
Preface

National Biophotonics and Imaging Platform. Last, but not least, I would like to thank my family for their support and understanding during my work on this book.

NUI, Galway

March 2012

Martin J. Leahy
List of Contributors

Rick Bezemer
University of Amsterdam
Department of Translational Physiology
Academic Medical Center
Meibergdreef 9
1105 AZ Amsterdam
The Netherlands

J. David Briers
Kingston University
Cwm Gorllwyn
SA35 0DN
UK

Daniel De Backer
Université Libre de Bruxelles
Department of Intensive Care
Erasme Hospital
Route de Lennik
1070 Brussels
Belgium

Mary E. Dickinson
Baylor College of Medicine
Department of Molecular Physiology and Biophysics
One Baylor Plaza
Houston TX 77030
USA

Ingemar Fredriksson
Linköping University
Department of Biomedical Engineering
581 85 Linköping
Sweden

Song Hu
Washington University in St. Louis
Optical Imaging Laboratory
Department of Biomedical Engineering
One Brookings Drive
St. Louis
MO 63130-4899
USA

Can Ince
University of Amsterdam
Department of Translational Physiology
Academic Medical Center
Meibergdreef 9
1105 AZ Amsterdam
The Netherlands
Christian M. Kerskens
Trinity College Institute of Neuroscience
Trinity College Dublin
Lloyd Institute
Dublin 2
Ireland

Timothy L. Kline
Mayo Clinic
Department of Physiology and Biomedical Engineering
Physiological Imaging Research Laboratory
200 First Street SW
Rochester
MN 55905
USA

Kirill V. Larin
University of Houston
Department of Biomedical Engineering
4800 Calhoun Rd.
Houston
Texas 77204
USA

Irina V. Larina
Baylor College of Medicine
Department of Molecular Physiology and Biophysics
One Baylor Plaza
Houston TX 77030
USA

Marcus Larsson
Linköping University
Department of Biomedical Engineering
581 85 Linköping
Sweden

Martin J. Leahy
Tissue Optics and Microcirculation Imaging Facility
National Biophotonics and Imaging Platform Ireland (NBIPi)
National University of Ireland
Galway
School of Physics
University Road
Galway
Ireland

Adam Liebert
Nalecz Institute of Biocybernetics and Biomedical Engineering
Polish Academy of Sciences
Department of Biophysical Measurements and Imaging
Trojdena 4
02-109 Warsaw
Poland

Roman Maniewski
Nalecz Institute of Biocybernetics and Biomedical Engineering
Polish Academy of Sciences
Department of Biophysical Measurements and Imaging
Trojdena 4
02-109 Warsaw
Poland

Paul M. McNamara
Tissue Optics and Microcirculation Imaging Facility
National Biophotonics and Imaging Platform Ireland (NBIPi)
National University of Ireland
School of Physics
Galway
Ireland
James F.M. Meaney
Centre for Advanced Medical Imaging (CAMI)
St. James’s Hospital
James’s Street
Dublin 8
Ireland

Richard M. Piech
Trinity College Institute of Neuroscience
Trinity College Dublin
Lloyd Institute
Dublin 2
Ireland

Dan M.J. Milstein
University of Amsterdam
Department of Translational Physiology
Academic Medical Center
Meibergdreef 9
1105 AZ Amsterdam
The Netherlands

Erik L. Ritman
Mayo Clinic
Department of Physiology and Biomedical Engineering
Physiological Imaging Research Laboratory
200 First Street SW
Rochester
MN 55905
USA

Gert E. Nilsson
WheelsBridge AB
Lövsbergsvägen 13
58937 Linköping
Sweden

Terence J. Ryan
University of Oxford
Green College
Oxford
UK

Marie-Louise O’Connell
Tissue Optics and Microcirculation Imaging Facility
National Biophotonics and Imaging Platform Ireland (NBIPi)
National University of Ireland
School of Physics
Galway
Ireland

Wiendelt Steenbergen
University of Twente
Biomedical Photonic Imaging Group
MIRA Institute for Biomedical Technology and Technical Medicine
PO Box 217
7500 AE Enschede
The Netherlands

Jim O’Doherty
Royal Surrey County Hospital
Department of Medical Physics
Egerton Road
Guildford GU2 7XX
UK

Tomas Strömberg
Linköping University
Department of Biomedical Engineering
581 85 Linköping
Sweden
List of Contributors

F. Stuart Foster
Sunnybrook and Health Sciences
Centre and the University of Toronto
Department of Medical Biophysics
2075 Bayview Avenue
Toronto
M4N3M5 Ontario
Canada

Hrebesh M. Subhash
Oregon Health and Science University
Department of Biomedical Engineering
School of Medicine
3303 SW Bond Avenue
Portland OR 97239
USA

Jean-Louis Vincent
Université Libre de Bruxelles
Department of Intensive Care
Erasme Hospital
Route de Lennik
1070 Brussels
Belgium

Lihong V. Wang
Washington University in St. Louis
Optical Imaging Laboratory
Department of Biomedical Engineering
One Brookings Drive
St. Louis
MO 63130-4899
USA

Ruikang K. Wang
University of Washington
Biophotonics and Imaging Laboratory
Department of Bioengineering
3720 15th Avenue Northeast
Seattle
Washington 98195
USA

Stanislaw Wojtkiewicz
Nalecz Institute of Biocybernetics and Biomedical Engineering
Polish Academy of Sciences
Department of Biophysical Measurements and Imaging
Trojdena 4
02-109 Warsaw
Poland
A Historical Perspective of Imaging of the Skin and Its Gradual Uptake for Clinical Studies, Inclusive of Personal Reminiscences of Early Days of Microcirculation Societies

Terence J. Ryan and Martin J. Leahy

Modern microscopy of microcirculation was conceived by the observers of especially the seventeenth century, but gestation was in the hands of the national and continental Microcirculatory Societies that began in the decade 1954–1964. They were a meeting point between the laboratory investigator of microcirculation and the clinician. Zweifach [1] reviewing historical aspects of microcirculation research wrote “The usage of the term ‘microcirculation’ in an organic context is of comparatively recent vintage, first appearing consistently in the literature during the 1950s.” Global collaboration with a strong clinical input began with World Congresses of Microcirculation first held in Toronto in 1975, then in San Diego in 1979, next in Oxford in 1984, and every four to five years since then. As an Oxford clinician specializing in care of the skin, T. J. R. was roped in at the deep end of nonclinical pursuit of microcirculation on several occasions. However, this began by a chance observation that if one pushes tissue fluid away by indenting the skin with a steel probe, one gets much better visualization of the skin capillary bed [2, 3]. It has long been known that one sees at the surface of the skin only what its optical properties allow. Excised epidermis from white skin placed over a printed page is transparent enough to read through it. Melanin of pigmented skin prevents such visualization. The redness of blood provides in vivo pinkness, but blue blood in veins is a consequence of blue light being scattered more than red. This does not stop the practised clinician from easily recognizing the condition when black skin is flushed. Newton [4] discussed the decomposition of white light, and Doppler [5] made known that the effect of movement toward or away from the observer influenced the color observed. For several centuries, any observation of complex surfaces reflecting light was clarified by applying transparent oils to that surface.

1.1 Early History

George P. Fulton [6], Professor of Biology at the Boston University, writing on the historical perspective of the founding of the American Microcirculatory Society, lists Harvey and Lord Lister amongst the early influences on microcirculation, but it
was interest in microscopy and improved microscopes in the seventeenth century that led to the first observations of blood flow by better imaging. The discoverers and forerunners of imaging were fascinated when they applied their new magnifying devices, and detecting transparency in some living tissues saw for the first time the movement of the content of the small capillaries. These early observations especially on red cells were well reviewed for the journal Blood Cells by Bessis and Delpechi [7]. As stated in that review, three men, Malpighi, Leeuwenhoek, and Swammerdam, made the most of the improvements in magnifying lenses in the early seventeenth century and noted red particles in blood capillaries in transparent tissues. Of these, van Leeuwenhoek of Delft (1632–1723) gained the most publicity by getting his observations published by the Royal Society of London [8]. Indeed, it was the tax collector, van Leeuwenhoek, who contributed one of the greatest innovations through his hobby by producing a very short focal length lens. This avoided chromatic aberrations, which plagued compound microscopes of the day, and yet produced sufficient magnification to reveal the structure of the blood cell (Figure 1.1) and its movement within organs and organisms if they were sufficiently transparent. It was this innovation that allowed Malpighi to confirm Harvey’s theory that blood circulates from the arterial to the venous side via these small capillaries, and indeed, it can be considered the discovery of the microcirculation.

Figure 1.1 The discovery of the circulation of the blood, the shape of the red blood cell, and, most importantly, the microcirculation (after The Discovery of the Circulation of the Blood, Charles Singer, G. Bell and Sons Ltd., London, Ref. [9]).